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A new approach to the computation of bifurcation diagrams is illustrated on axi-
symmetric equilibria of liquid droplets and bridges. The new technique has an ar-
chitecture that solves boundary-value problems in parallel and delivers a global bi-
furcation diagram, capturing isolated branches. In contrast, conventional techniques
deliver solutions in sequence using local path continuation. A suitable mathematical
formulation for the classical problem of predicting shapes of droplet and bridge equi-
libria is introduced and it its shown how the new technique yields global diagrams.
Properties of these diagrams allow families of equilibria to be organized in a way
that reveals common structures.c© 2000 Academic Press
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1. INTRODUCTION

In this paper we will illustrate a new computation technique for the efficient utilization
of parallel resources, using the example of liquid figures of equilibrium. We will show that
the new computational approach not only provides a complete global picture of bifurcation
problems but also helps to relate physical problems with different parameters.

The computational approach, introduced by [10, 11, 14], is based on some simple ideas
from the theory of ordinary differential equations (ODEs), combined with the piecewise
linear (PL) algorithm [1], and will be referred to henceforth as the parallel simplex algorithm
(PSA). In contrast to path-continuation techniques, which solve for equilibria in sequence
in tracing a branch, the PSA simultaneously resolvesall equilibria lying onall branches (in
a given domain). Although simple shooting remains at the core of the PSA, the combination
of shooting with the PL algorithm offers a good alternative to traditional methods if the
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underlying ODE is not very sensitive to the perturbation of initial conditions. In this paper
we describe the application of the PSA to such a problem and refer to other applications in
mechanics where it could be used successfully.

Instead of giving a general description (which is provided by the above-cited papers), we
will proceed in Section 2 by formulating the problem of determining the shape of droplets
and bridges as an initial-value problem (IVP). In Section 3 we will apply the PSA to bridges
and droplets and describe the implementation. Section 4 is devoted to the description and
discussion of results of computations.

The PSA can be directly applied to two-point boundary-value problems (BVPs) associ-
ated with ODEs. Assuming that the latter is of even order (which is most often the case
in mechanics), it is equivalent tȯx(t)= f (x(t), λ), x ∈<2n, λ∈<, t ∈ [0, 1]. Let us re-
group the equations so that the initial (t = 0) conditions apply to the firstn components
(xi (0)=ai , i = 1, 2, . . . ,n) and far-end (t = 1) conditions apply to the those with indicesνi

(xνi (1)= bi , i = 1, 2, . . . ,n), whereai , bi are given scalars. We denote the remaining initial
conditions orvariablesby vi−n= xi (0), i = n+ 1, n+ 2, . . . ,2n. The (n+ 1)-dimensional
space spanned by the variables and the parameterλ is called the global representation space
(GRS). Using any convergent forward integrator for the IVP, we can compute the final
valuesxνi (1), (i = 1, 2, . . . ,n) asfunctionsof vi andλ: xνi = gi (v1, v2, . . . , vn, λ) and then
solve the algebraic system

gi (v j , λ)− bi = 0; i, j = 1, 2, . . . ,n, v j ∈
[
v0

j , v
1
j

]
, λ ∈ [λ0, λ1] (1)

by the PL algorithm [1] in the prescribed (n+ 1)-dimensional domain of the GRS (defined
by the constants with superscript in (1)). Geometrically, (1) describes the intersection ofn
hyper-surfaces in the (n+ 1)-dimensional space, yielding typically (locally) 1-dimensional
solution sets, thus branches. These branches will appear as polygons, due to the piecewise
linear approximation. (We remark that the variables can have a far more general interpre-
tation in the PSA; however, the above version is sufficient to introduce the most important
concepts.)

Although the key ideas of the PSA are rather easily described, this approach is not very
widespread in the computational community. It requires in many cases massive hardware
capabilities, but so do path continuation methods. However, one key difference between the
two approaches is historic. Present, very efficient, and sophisticated path continuation codes
[8, 9, 30] evolved on the basis of earlier, less refined ones which, in turn, were the direct
successors of hand-computed methods. There is no such “baggage” associated with the
PSA, since a small-scale version would be not only cumbersome but of little use. The other
reason for the lack of tradition is the recent appearance of parallel computers and the
possibility of parallel computation on distributed networks. Parallel computation is at the
core of the PSA, although for test purposes, it can be run on a single node. We remark that
there exist other algorithms that combine search with path continuation [17]; however, the
search is restricted to solution points rather than branches.

Application of the method can be visualized without technical details. System (1) can be
resolved simultaneously in any subdomain of the GRS. “Simultaneous resolution” stands in
relation to “continuation” as photographic imaging stands to freehand sketching. The pixels
of a film negative are developed simultaneously (in parallel) in a chemical bath, whereas the
hand sketch requires a sequence of strokes with each point in a stroke laid down sequentially.
Developing this analogy further, we note that bifurcation diagrams obtained by continuation
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are like hand sketches where the pencil cannot lift whereas simultaneous resolution can
deliver families of equilibria that are unconnected (e.g., isolas). These features make the
PSA an optimal candidate for the relatively fast, global understanding of low-dimensional
bifurcation problems [10, 11, 14, 19]. Limitation of the method to low-dimensional prob-
lems is due to computational demand and is discussed in the concluding section.

Liquid equilibria problems are low dimensional. The GRS is only 2-dimensional for a
wide range of physical situations, as seen in Sections 2 and 3. Scientific interest in figures
of equilibrium can be traced back to the time of Plateau [28]. Mathematicians have been
stimulated by the minimal surface problem and by capillary surface interfaces [13, 37, 39]
Physical chemists have made early computations of shapes. Motivation has ranged from
improving measurement devices where a meniscus is involved [3] to measuring surface
tension using droplet and bubble methods [2, 4]. Recent interest from the engineering
community has focussed on materials [5, 7] and microgravity applications [26, 27]. The
common feature here is that liquid shapes are dominated by surface tension (large capillary
length). In these papers, by concentrating on different physical aspects (such as effects of
gravity, asymmetric boundary conditions, etc.) unifying features easily recognized in the
setting of the GRS have been obscurred. Our present goal is to show that the PSA not only
can utilize parallel computing resources very efficiently in order to solve such problems but
also can help to understand the relationship among them by putting bifurcation diagrams
in a common geometrical setting.

2. FORMULATION OF THE GOVERNING EQUATIONS

2.1. Liquid Shapes as IVPs: A Dynamical Systems Approach

Static shapes of surfaces that contain a liquid are governed by the normal stress balance
across the surface, called the Young–Laplace equation. This requires the pressurep in the
liquid to be proportional to the surface tensionσ and to the sum of the principal curvatures,
κ1+ κ2 (cf. [23, 27] or [40]),

p = σ(κ1+ κ2). (2)

A pressure within the bridge that is below that of the surroundings (vacuum) is negative.
For surfaces of revolution of arz plane curve (cf. Fig. 1a), the principal curvatures can be
expressed in terms ofα, the (counterclockwise positive) angle with respect to ther axis
(i.e., tanα≡ ż/ṙ ),

κ1 = sin(α)/r,
(3)

κ2 = α̇.

Arclengths is the independent variable (˙≡ d/ds) in this “tangent-angle” formulation, a
common one for computing capillary equilibria [2]. In terms ofα, the Young–Laplace
equation (2) takes the form of the ODE system

α̇ = p+ Bz− sin(α)/r

ṙ = cos(α) (4)

ż = sin(α),
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FIG. 1. Definition sketches for axisymmetric figures of equilibrium: (a) space-curve geometry or “kinematics”
for the IVP; (b) liquid bridge BVP; (c) liquid droplet BVP.

where reduced quantities have been used and the effect of gravityg acting on the liquid in the
z direction has been included. In particular, dimensional variables, denoted with overbars,
are related to the reduced variables by

r ≡ r̄ /R, z≡ z̄/R, s≡ s̄/R, κ ≡ κ̄R, p ≡ p̄R/σ.

The Bond numberB≡ ρgR2/σ depends on the liquid densityρ (relative to surroundings)
and a contact radiusR.

The local equations (4) can be integrated inz to obtain the total reaction forceF (F ≡ F̄/
(πRσ )) exerted by any segment of surface-bounded liquid of lengthz,

F = 2r sinα − pr2+ B{V(z)− zr2}, (5)

whereV(z)≡ ∫ z
0 r 2 dzrepresents the scaled volume of the segment (V ≡ V̄/R3). Note that

F is a constant in the integral constraint (5).
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In the special no-gravity case (B= 0), (4) reduces to

α̇ = p− sin(α)/r
(6)

ṙ = cos(α).

The third equation decouples from the system and can be integrated separately onceα(s) is
known. The solution structure and the dynamics are completely determined by (6), which
turns out to be completely integrable [18] with first integral

F = 2r sinα − pr2. (7)

Equation (7) is recognized as theB= 0 subcase of the force balance (5).
Individual trajectories appear aslevel setsof F in theαr phase plane. In fact, the topology

of the phase space is that of acylinder sinceα is 2π -periodic, so we will consider only
α ∈ [−π, π ]. The fixed points of the flow are associated with extrema ofF and can be
found by letting the derivatives vanish,

α̇ = ṙ = 0, (8)

leading to

(α, r ) =
(
π

2
,

1

p

)
(9)

(α, r ) =
(
−π

2
,− 1

p

)
.

Here, even though the formulation derives from a cylindrical coordinate system (r ≥ 0), the
interpretation of system (4) as an IVP clearly permits negativer . The fixed points appear
in the rz physical space as straight vertical lines atr =±1/p. These are right-circular
cylinders in 3D space. We can identify other special solutions by requiring the curvatureα̇

to be constant, leading to

r = 2 sin(α)

p
. (10)

These solutions appear in therz space as circles with center on thez-axis and radius equal
to 2/p. The liner = 0 in the phase space is singular sincer = 0 is only admitted atα= 0.
At the intersection point we havėα= p/2. The special trajectory (10) and the singular so-
lution separate the phase space into an open domain and two closed domains, the latter one
containing the fixed points. The eigenvalues of the linearized map prove to beλ1,2=±i /p,
purely imaginary, so the fixed points are elliptic and there are closed orbits encircling them,
remaining in the closed domains.

Based on the above information we can draw the global phase portrait of the system (6),
revealing four types of trajectories (cf. Fig. 2a). Interpretations of these trajectories in the
phase planeαr , the physical planerz and as surfaces of revolution are listed in Table I. We
note that these results are classical. All the trajectories can be expressed in closed from in
terms of elliptic integrals of the first and second kind [15, 20].

The casep= 0 will be of special interest. In this case, since fixed pointsA escape to
infinity, the B, C, andD-type orbits become similar and only one kind of orbit remains
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FIG. 2. Global phase portrait forB= 0: (a) typical case withp> 0; (b) degenerate case withp= 0.

(Fig. 2b). In therz plane, this trajectory represents a catenary. As a surface of revolution,
it is known as a catenoid. This result is consistent with a classical theorem of differential
geometry that the only surface of revolution that is a minimal surface (vanishing mean
curvature) is the catenoid [21]. Based on the classification for the IVP orbits we now
proceed to explore the global bifurcation diagram for the BVP.
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TABLE I

Different Types of Solutions

Type αr plane rz plane 3D surface

A Fixed points Straight lines Cylinder
B Closed orbits Oscillations Unduloid
C Separatrix Circle Sphere
D Open, oscillating orbits Looping Nodoid

2.2. Liquid Equilibria as BVPs: Implementing the PSA

A variety of physical problems (BVP) associated with the ODE (4) have been studied.
Boundary conditions considered for liquid bridge equilibria (6) may be either pinned contact
line (Fig. 1b withr0= 1)

r (0) = r |z=L = 1, (11)

or fixed contact angleθ [22, 37],

α(0) = π − θ; α|z=L = θ, (12)

wherez is defined by the third equation of (4) with corresponding boundary condition

z(0) = 0. (13)

Droplets with fixed contact angle (Fig. 1c) or pinned contact line may also be considered
[39]. Substrate geometry and liquid/substrate chemistry determines which is appropriate in
any physical situation. Single droplet equilibria can be recovered as a special case of the
liquid bridge equilibria. Alternatively, the droplet problem can be formulated as a BVP on its
own with a different GRS. This example will serve below to illustrate how different GRSs
associated with the same physical problem deliver equivalent bifurcation diagrams. The
computational aspects of the PSA are most clearly illustrated on weightless equlibria (6).

Consider the pinned contact line bridge with equal end disks (r0= 1). In order to apply the
PSA to this BVP, we have to establish the global coordinates spanning the GRS. As described
in the Introduction, these coordinates (variables) consist of unspecified initial values and
parameters. In our case, the only unspecified initial value isα(0), which, with the parameter
p, spans a 2-dimensional GRS. By using the coordinates (α(0), p) the physicalrz shape
can be uniquely reconstructed by forward integration of (6) and the third equation of (4).
Adopting the general notation of the Introduction, we haven= 1; x1≡ r ; x2≡α, a1= 1,
ν1= 2, v1≡α(0), λ≡ p.

Note that the far-end condition in (11) is not expressed for fixed value of arclength but
as an integral constraint. This can lead to nonuniqueness. Indeed, the functionf (α0, p)≡∫ s

0 sin(α)− L = z− L might haveseveralzeroes as we integrate forward and the far-end
condition of (11) does not distinguish between them. By labeling the subsequent values of
the arclength corresponding tof = 0 in increasing order ass1, s2, . . . , we can also label
BVP solutions in a similar manner, and the BVP solution corresponding tosk will be called
a level k solution, some examples of which are given in Fig. 3a. Each solution level is
generated geometrically by the intersection of the 2D GRS with a piecewise continuous
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FIG. 3. Bifurcations and crossings: (a) individual solutions belonging to different levels; (b) intersecting
branches on identical and different levels (bifurcations and crossings, respectively).

(and smooth) surface; different levels belong to different surfaces. This implies that, in order
to reconstruct a BVP solution from its global coordinates, the integerk is needed as well.

Projections of multiple solution levels onto the bifurcation diagram gives rise to two
kinds of intersections of families. Bifurcations occur among solutions of the same level
while “crossings” occur if branches belong to different levels. These different intersections
respond differently to perturbations. Bifurcations “break” to become “imperfect” while
crossings persist under perturbation. Bifurcations (generic) and crossings are schematically
illustrated in Fig. 3b. For pinned liquid bridge equilibria between equal disks, for example,
the bifurcations occur atα=±π/2, as is well known (e.g., [25]) and as illustrated in Fig. 5.

Before the computations are described we mention another interesting qualitative feature
of the bifurcation diagram. As we have seen in the preceding subsection, the IVP’s phase
space is divided by a separatrix (C-type solution), corresponding to circular shapes. Quite
surprisingly, an exact “image” of this separatrix appears on the BVP’s bifurcation diagram.
In the case of the IVP, foranytrajectory (α(s), r (s)) it can be uniquely determined whether
it is inside or outside the separatrix based on the coordinates ofany single point on the
trajectory. In the case of BVP solutions this point can be conveniently selected as (α(0),
r (0))= (α(0), 1). As a consequence, the curve

p = 2 sin(α(0)) (14)
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will separate BVP solutions in the GRS (α(0), p). Belowthe locus of (14) we have B-type
solutions (unduloids), whileabove(14) we have D-type solutions (nodoids). Intersections
with (14) correspond to C-type solutions (spheres). Refer to Table I.

The BVP separatrix (14) actually represents the solution branch of adifferent BVP
belonging to the same IVP. The boundary conditions for this problem are

r (0) = 1, r |z=0 = −1 (15)

and define single droplets (or bubbles) connected to a single disk instead of liquid bridges.
Although the boundary conditions (11) and (15) appear to be different, they are closely
related from the point of view of the PSA. Both BVPs have the same phase space and GRS.
The solutions corresponding to (15) can be easily identified in the phase space, since we
know that the only trajectory crossing ther = 0 singular line is the separatrix. Consequently,
(15) can have only solutions that are segments of the separatrix, and thus they are the C-type
circular solutions (spheres).

We have just seen how different physical problems have different BVPs corresponding to
the same IVP. It is also possible to have different GRSs for the same physical problem. We
illustrate with the droplet problem (ODE (6)). As an alternative to (15), the droplet BVP may
be defined by conditions applied at the axis of symmetry at some (unknown) heightz(0),

α(0) = r (0) = 0, r |z=0 = 1. (16)

Here, the GRS is (z(0), p) and the end condition takes the form of a constraintg(z(0), p)−
b≡ r |z=0− 1= 0 whose solution is the bifurcation curve. As indicated above, the IVP can
be solved in closed form for equilibria that are pieces of spheres. The bifurcation equation,
in this case, is explicit,

g(z(0), p)− b = (z(0)+ 2/p)− (2/p)(1− (p/2)2)1/2. (17)

This curve is plotted in Fig. 4a. This may be compared to the curve in the GRS given by
(14) shown in Fig. 4b. Since both diagrams consist of a single (open) infinite line, they are
topologically equivalent. Moreover, the number of turning points in pressure (local max-
ima) are preserved. This must be so since turning points in pressure correspond to the limit
of stable equilibria, as discussed below. For bubbles and droplets, this stability limit is the
basis of the “maximum bubble pressure” method of measuring interfacial tension [33, 38].

The relationship between the two diagrams (Fig. 4) can be derived analytically. Since the
solution is a circular arc in therz plane, symmetrical to thez axis,z(0) can be expressed,
by trigonometry, as

z(0) = cosα(0)− 1

sinα(0)
. (18)

Substituting (18) and (14) into (17) yields an identity.
After these preliminary remarks we proceed by describing the implementation of the

PSA. The GRS, like the phase space, has the topology of a cylinder, so only solutions
with α(0) ∈ [−π,+π ] need be considered. We pick an arbitrary intervalp ∈ [ p1, p2],
mesh sizes1α(0), 1p, and a valuekmax and subdivide the given rectangle into rectangu-
lar triangles (2D-simplices) the orthogonal sides of which are equal to the corresponding
meshsize. At each mesh point the function valuesfk= rk|z=L − 1, k≤ kmax are computed
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FIG. 4. Bifurcation curves for different GRSs show “height”z(0) or “angle”π −α(0) against “pressure”p
for the spherical droplet (or bubble). Curve (a) plots Eq. (14) and (b) Eq. (17). In a) and b) states between the
origin and turning point are stable while those beyond the turning point are unstable.

(the indexk refers to solution level) and the functionsfk are linearly interpolated inside the
simplices. If the interpolated triangle intersects the GRS inside the investigated simplex, a
linearized piece of the solution branch has been obtained. The operations of the different
simplices (including the evaluation of the function and the linear algebra) can be performed
simultaneouslyon different processors. Thus, pieces of the bifurcation diagram emerge
simultaneously, just as in photographic processing. The resulting bifurcation diagram is
only approximate; however, the error at each approximate solution point can be measured
exactly by substituting into the functionfk. The solution points are stored as a 4-vector; the
two global coordinates followed by the value ofk and the value of the error.

We conclude this subsection by pointing out an interesting and useful feature of the GRS.
The ODE (4) possesses a 3-dimensional phase space. However, the GRS is identical with
that of (6). In a similar way, liquid bridges connecting disks of different diameters, that is,
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TABLE II

Summary for Phase Spaces and GRS

ODE Phase space BC GRS

(4) [α, r, z] (11), (13) [α(0), p]
(4) [α, r, z] (19), (13) [α(0), p]
(4) [α, r, z] (15), (13) [α(0), p]
(6) [α, r ] (11) [α(0), p]
(6) [α, r ] (19) [α(0), p]
(6) [α, r ] (15) [α(0), p]

with boundary conditions

r (0) = 1; r |z=L = r0, (19)

would have the same GRS. As summarized in Table II, the GRS is identical for a variety of
equations and boundary conditions. This permits one not only to compute, but also to store
and visualize the bifurcation diagrams in the same setting. Perhaps most importantly, it
provides a connection between the various BVPs and a means for a physical understanding
to be passed from one context to another.

3. PHYSICAL INTERPRETATION OF THE RESULTS

3.1. The “Mother” Diagram: Rings and a Double Helix

Figure 5 shows the computational results in the domainα(0) ∈ [−π, π ]; p ∈ [−0.5, 3.5]
for the BVP (6, 11) and (6, 15), withL = 1. (The latter one, corresponding to spherical
solutions, is analytically given by (14).) As indicated in Table II, both BVPs belong to the
same GRS (although the function to be evaluated is different). Physical shapes corresponding
to numbered points are plotted on the bottom. Observe configuration No. 15 close to a
bifurcationand No. 14 close to acrossing. Observe that special configurations Nos. 4 and
9 solve both BVPs.

The double-helical topology of the bifurcation diagram is also apparent from Fig. 5 if
we let theα(0)=±π edges coincide to form a cylinder. The double helix, marked with
configurations 1, 3–9, 17, 15, 16, corresponds to symmetrical shapes, as observed already by
[24]. Apparently a new observation is related to asymmetric shapes, which appear onclosed,
periodicbranches or rings. Such a branch is marked by the configurations 13, 14, 15, 10.
We emphasize that such global observations on the topology of the bifurcation diagram are
made evident by the PSA computations, which provide a global picture in an automated way.

Figure 6 shows the axonometric view of the 3D (xyz) embedding of the bifurcation
diagram. The space was constructed by lettingx≡ cosα(0); y≡ sinα(0); z≡ p. Vertical
lines correspond toα(0)= constant, horizontal circles top= constant. Only theα(0) ∈
[0, π ] portion of the separatrix (14) is displayed. Observe that the separatrix corresponds to
a planar cutof the cylinder, resulting in an ellipse. Figure 6a illustrates the double-helical
structure of the symmetrical branch; a few physical configurations are identified. Figure 6b
illustrates two periodic branches, carrying asymmetrical shapes.

The physical shapes displayed in Figs. 5 and 6 have not been stored when the diagram
was computed. Rather, they were re-created by identifying the relevant points of the GRS
on the bifurcation curve and using global coordinates to integrate the ODE forward. This
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FIG. 5. Global bifurcation diagram for theL = 1 weightless bridge (B= 0). (a) Plot in the [α(0), p] GRS sup-
plemented by separatrix (14) and by numbered special points. (b) Physical configurations correspond to numbered
points.

idea makes it easy to visualize PSA computation results interactively. One visualization
software application is described in [12].

We speak above of “physical” shapes but many of the 20 shapes shown in Fig. 5 are not
realizable in the laboratory. Equilibrium shapes may not be physically realizable because
they violate a physical constraint (self-intersecting and/or apparatus-intersecting, e.g., No. 2,



50 DOMOKOS, SZEBEŔENYI, AND STEEN

FIG. 6. Special structure of branches displayed on the cylindrical version of the GRS. (a) Double-helical struc-
ture of single branch carries all symmetrical shapes. (b) Two lowest periodic branches (rings) carry asymmetrical
shapes.

11–20) or because they are unstable. Note that the asymmetric states in the rings are self-
intersecting.

Whether or not a shape is unstable depends on the class of disturbances to which the con-
figuration is subjected. For figures of equilibrium, stability to constant-pressure, constant-
volume, axisymmetric, or general perturbations (axisymmetric and non-axisymmetric) is
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important. For states with single-valuedr (z) profiles (0≤α(0)<π along the symmet-
ric branch), it is known that axisymmetric perturbations are more dangerous than non-
axisymmetric ones [16, 32]. Moreover, it is known that the bifurcation to non-axisymmetric
shapes occurs atα(0)= 0 [27]. Therefore, shape 1 in Fig. 5, for example, will be unstable
to a 3D shape perturbation. We therefore restrict our attention to the 0≤α(0)<π seg-
ments of the symmetric branch where, to determine instability, it is sufficient to consider
axisymmetric disturbances only.

For purposes here, it is sufficient to discuss instability with regard to constant-pressure
perturbations. In this case, theory dictates that the stability/instability can be read off a
bifurcation diagram where pressure is the control parameter [25]. In particular, the number
of modes of instability is related to the number of “turning points” in the bifurcation curve.
For example, with regard to Fig. 5, shapes 6 and 8 both correspond to catenoids. One is
stable and the other unstable. This can be readily deduced by observing that (i) shape 4, a
piece of a sphere, is known to be stable and (ii) there are no turning points between shape
4 and 6 so that, according to the theory, catenoid 6 must also be stable. It then follows
that catenoid 8, separated from 6 by one turning point, is unstable with a single mode of
instability. Such stability/instability results can also be obtained directly, but more tediously,
by considering the second variation of the energy functional, the solution of whose Euler–
Lagrange equations are given in Fig. 5 [31].

In the engineering literature, liquid bridge lengthL and volumeV are typically considered
as control parameters. The cylindrical state 5 (Fig. 5) exists for all lengths and goes unstable
to constant-volume disturbances atL = 2π , the so-called Plateau–Rayleigh limit. For this
reason, studies often include a range ofL. Using continuation methods, Lowry [24] has
reported a double helix consistent with Fig. 5 and has documented its evolution withL
over a range 0< L < 28. He finds that succeeding pieces of the helix disconnect at specific
lengths with the first disconnection occurring atL ≈ 9.10. He argues that this is relevant
to the physics of stabilization (efforts to suppress the Plateau–Rayleigh instability). It may
be noted that a convenient summary of the stability limits for weightless bridges (B= 0)
between equal diameter contacts (r0= 1) for 0< L < 6 is available [15].

In the next subsection we generalize the BVP in order to better understand the difference
between crossings and bifurcations and also to illustrate the power of the PSA for studying
multi-parameter problems.

3.2. Unequal Disks: Bifurcation Diagrams as Level Sets

As summarized in Table II, there are many different extensions of the BVP (6, 11) which
can be investigated in the same GRS [α(0), p]. We first discuss the case of unequal disks (1).
Boundary conditions (11) are replaced by (19). The bifurcationfunction(1) g(α(0), p)− 1
is replaced byg(α(0), p)− r0. This implies that bifurcation diagrams corresponding to dif-
ferent values ofr0 not only can be plotted in the same plane (same GRS), but also emerge as
level setsof the same surfaceg(α(0), p). Since, as illustrated in Fig. 3, solutions can belong
to different levels, we are investigating multiple, piecewise smooth surfaces simultaneously.

If two intersecting curves of ther0= 1 “mother” diagram happen to belong to the same
level, then a slight variation ofr0 results in slicing the same smooth surface with an adjacent,
parallel plane, producing an unfolding of the bifurcation point in the sense of elementary
catastrophe theory [29]. However, if the intersecting curves belong todifferentsurfaces
then transversality is robust and a small variation ofr0 will not change the local picture
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FIG. 7. Global bifurcation diagram (L = 1, B= 0) for unequal disks. (a)r0= 0.95; (b)r0= 1.05; (c) diagram
with r0= 0.95; 1.00; 1.05 plotted simultaneously. Observe the unfolding of bifurcation points (15, 20) and the
persistence of crossings (14).

qualitatively. The above features are nicely illustrated in Fig. 7, showing ther0= 0.95;
1.00; 1.05 diagrams. Observe that the bifurcation points correspond to the intersection
of the double helix of symmetric solutions with the periodic asymmetric branches. These
bifurcation points all lie on two vertical lines,α(0)=±π/2. One also observes the crossings
as transversally intersecting curves. These are preserved under perturbation.

This observation leads to an immediate result, a new result, as far as we are aware. The
range of pressure stability, [0, pmin], decreases asr0 decreases. That is,pmin< 0 increases
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FIG. 8. Level 1+ Level 2+ Level 3 show BVP solutions for 0.05≤ r0≤ 1.1. Level 1, 2, and 3 solutions are
displayed separately on right. Observe edgesa, b, c corresponding to discontinuities (cuts). Bottom left sketch
illustrates the topology of the assembly, showing a closed loop. Observe closed loop on upper bifurcation diagram
shrinking onto (α(0), p)= (π/2, 2) asr0→ 0.

asr0 decreases (cf. Fig. 8, level 1). This behavior is physically reasonable since the average
slenderness increases forr0< 1 and decreases forr0> 1. Increasing (decreasing) average
slenderness destabilizes (stabilizes). Note especially that the level set feature makes this
a global result, true for all 0≤ r0< 1, for example. Contrast this to what a perturbation
calculation would deliver. Results for corresponding volume-stability limits for unequal
supports have been obtained by a conventional approach [36].

As noted in Fig. 7a, in the case ofr0< 1, the diagram consists of disconnected, isolated
loops. (One of the key advantages of the PSA is that it makes possible to compute such
diagrams.) If we decreaser0 further, the loops shrink and at some critical value they become
isolated points and then disappear. The interpretation of such an isolated point is clear for
the lowest loop, as illustrated in Fig. 8.

As r0→ 0 we obtain a hemisphere as limiting solution, which is also theα(0)=π/2
solution on the separatrix (14) corresponding to the single droplet. This is a degenerate BVP.
It has been discussed with respect to volume-stability limits in [34]. A small perturbation of
the boundary conditions will result in the disappearance of the solution. Similarly degenerate
states also exist for the other rings; however, their physical interpretation is less obvious.
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FIG. 9. Global bifurcation diagrams forL = 1 bridge under gravity;B=−0.05, 0.0, 0.05. Observe point
marked by arrow indicating that imperfect diagrams do not represent slices of a surface represented by a function,
in contrast to Figs. 7 and 8.

As Fig. 8 illustrates, the smooth bifurcation curves live on nonsmooth, noncontinuous
surfaces “assembled” along discontinuities. The bottom left sketch in the figure illustrates
the topology of such an assembly: the closed loop illustrated is toplogically equivalent to
ther0< 1 loops observed in Fig. 7 and 8.

The PSA can be used to explore other parameter-dependent global behavior. Figure 9
illustrates theB=−0.05; 0; 0.05 global diagrams for the pinned–pinned bridge under
gravity, associated with Eq. (4) and boundary conditions (11). We can observequalitatively
the same phenomenon with respect to bifurcation points as in the case of unequal disks.
However, observe the point marked by the arrow. Superposed bifurcation diagrams inter-
sect near a generic bifurcation point, indicating that different values ofB imply different
functionsg(α(0), p) in (1), in contrast to the case of different values ofr0. For equal end-
plates, pressure-stability limits for bridges under gravity [25] and volume-stability limits for
nonzero gravity [35] have been reported, both using conventional computational approaches.

4. CONCLUSIONS

A novel algorithm (PSA) for obtaining families of solutions of two-point boundary value
problems is described. The approach is based on integrating the underlying IVP in parallel,
from a grid of initial conditions. Application of the PSA to the study of bifurcation diagrams
for liquid equilibria highlights several advantages of the algorithm.

Isolated branches. Families of solutions that are not connected to other branches are
readily captured. In the liquid bridge example, isolas on the cylinder occur with perturbations
of gravity (B 6= 0) and of disk inequality (r0 6= 1).
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Global diagrams. An immediate global overview of the bifurcation diagram is pro-
vided. This gives, for example, a quick recognition of the rings and the double helix structure
for the weightless bridge (Fig. 6). Global information is valuable since regions that are non-
physical for one set of parameter values can become physical for another, that is, under
problem deformation.

Diagram deformation. Snapshots of how a bifurcation diagram “deforms” as the prob-
lem deforms are readily accessible. For example, disk inequality breaks the double helix on
the cylindrical phase space in one of two ways: into a simply connected or into a non-simply
connected loop, depending on whetherr0< 1 or r0> 1 (Figs. 7a and 7b).

Deformation is helpful in understanding families of problems. By varying end disk diameter,
the liquid droplet is recovered as a limiting case of the liquid bridge. Varying end disk
diameter deforms bifurcation diagrams as a sequence of “level sets” of an underlying
function. Powerful results are available in such cases. Complications due to the fact that
bifurcation curves are patched together from several functions can be resolved (e.g., Fig. 8).
Some new stability results are obtained using the approach.

We have shown that one BVP can have more than one GRS. This observation raises the
question (an open question) as to whether there is a “preferred” GRS for the understanding
of a particular BVP deformation.

The main limitation of the PSA is due to computational demand. The cost of tiling the
GRS into simplices grows exponentially with the dimension of the problem. (Diagrams
for the 2D liquid bridge problem can be computed on a desktop.) Currently, the PSA is
restricted to low- (n< 10) dimensional BVPs. Forn> 2 problems, computational resolution
of the intersections of hypersurfaces can yield spurious solutions which have to be filtered
separately [14].

We envision the PSA as acomplementto path-continuation techniques. For low-
dimensional problems (model problems), it gives a relatively complete picture. For higher-
dimensional problems, its role is to facilitate the global understanding of diagrams at an
initial stage. For example, it could be used to scan the parameter space at low resolution.
Diagrams could be subsequently refined by using path continuation.
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